Our Department

Faculty Directory Header Image

Russ Algar

Profile

Research and Teaching Interests

Luminescent Materials

Fluorescence and other types of photoluminescence spectroscopy and imaging are highly advantageous as analytical techniques. These techniques are very sensitive, rapid, non-invasive, and capable of multiplexed detection. Photophysical processes such as Förster resonance energy transfer (FRET) or photoinduced electron transfer can modulate luminescence “on” or “off,” and provide exciting opportunities for developing analytical probes for the detection of a wide range of chemical and biological targets.

Luminescent nanoparticles provide additional opportunities to capitalize on the advantages of fluorescence. These materials will often have superior brightness and photostability than molecular luminophores, and provide surface area that can used as scaffold for building multifunctional, biomolecular architectures and/or carrying therapeutics. 

We are interested in developing new analytical applications for luminescent nanoparticles and other luminophores, with a special emphasis on bio/chemical sensing, imaging, and assays.

 

Bio/Chemical Sensing

Biomarkers are molecules that, by virtue of their concentration or activity, are indicative of certain disease states, pathogens, normal biological processes, or even therapeutic efficacy. Improved methods for the sensitive and specific detection of biomarkers are critically needed for clinical diagnostics and biomedical research.

We are using luminescent materials, in combination with spectroscopy, imaging, FRET, bioconjugate chemistry, and surface chemistry to develop new strategies and devices for bio/chemical sensing and bioassays. We aim to detect target proteins, enzyme activity, nucleic acids, and other biomolecules, both in vitro and in cellular contexts.

 

Research Project Areas

Materials synthesis and biofunctionalization. Materials science continues to develop new and interesting luminescent materials that may be advantageous for our research. We synthesize and/or chemically modify these materials for applications in bioanalysis and bioimaging. Semiconductor quantum dots are one of the most interesting and advantageous materials we use in our research; however, we are also interested in lanthanide complexes, fluorescent polymer materials, and magnetic materials.

 

Understanding the nanoparticle interface. Nanoparticles are heterogeneous systems that can be homogeneously dispersed, support polyvalent modification with biomolecular probes, and have tailorable surface properties (e.g., charge, polarity). We are learning how to rationally design nanoparticle-bioconjugates for optimum performance in biosensing and bioassays. The nanoparticle interface, and its interactions with both the biological target and background materials, can potentially affect its sensitivity, selectivity, stability, and many other properties. An understanding of these interactions and their implications will allow surface chemistry to be tuned and exploited to maximize analytical performance.

 

New energy transfer configurations for sensing and imaging. The ability to turn luminescent materials, such as QDs, “ON” and “OFF” via energy transfer processes is essential to the development of biosensors and imaging probes. We are developing methods of assembling multiple energy transfer pathways around a nanoparticle to “program” it with multiple functions, e.g., the orthogonal detection of multiple biomarkers. We also interested in adapting energy transfer configurations for use with low-cost, portable diagnostic devices. Lanthanide-based system are also being developed and combine spectral, intensity-based, and temporal modulation to create novel bioprobes and molecular logical operators.

 

Point-of-care diagnostic devices. A huge fraction of the healthcare costs in northern and rural Canadian communities is associated with transportation of patients to urban centres for diagnostics and treatment. We are aiming to exploit nanotechnology and luminescent materials to develop new diagnostic devices that can be used on-site in a doctor’s office or hospital room. Such devices would also reduce healthcare costs and increase efficiency in urban centers, help enable enable personalized medicine, and would potentially valuable for the Developing World, field deployment, and other low-resource settings. Some of the guiding principles of this research are the need for low-cost, low-power, portability, integration with mass-produced consumer electronic devices (e.g., smartphones).

 

Intracellular sensing. Cells are perhaps the most complex ‘beakers’ known, with an immense number of chemical reactions occurring in concert in a very small volume. A detailed understanding of cellular processes and their dynamic responses to stimuli will provide new insights into health and disease, including new and improved methods for diagnosis and therapy. We are developing FRET-based probes and imaging methods that can be used to quantitatively track enzyme activity and cascades in cells, the expression of genes and other nucleic acid targets (e.g., miRNA), and other intracellular or extracellular processes.

 

Contact

Real name: 
Email: 
Office Room Number(s): 
Chemistry D326
Office Phone Number: 
604-822-2464
Lab Room: 
Chemistry D329
Fax Number: 
604-822-2847

Curriculum Vitae

Canada Research Chair (Tier 2) in Biochemical Sensing (2012-Present)

Michael Smith Foundation for Health Research Scholar (2014-Present)

Editorial boards: Analytical Chemistry Research (Elsevier), Chemosensors​ (MDPI), Nano Reviews (Co-Action)

NSERC Postdoctoral Fellow, U.S. Naval Research Laboratory (2010-2012) 

Governor General's Academic Gold Medal (2011)

Ph.D., University of Toronto (2010)

M.Sc., University of Toronto (2006)

Hon.B.Sc., University of Toronto (2005)

Publications

2015

Massey, M. ; Wu, M. ; Conroy, E. M. ; W. Algar, R. Mind Your P's And Q's: The Coming Of Age Of Semiconducting Polymer Dots And Semiconductor Quantum Dots In Biological Applications. CURRENT OPINION IN BIOTECHNOLOGY 2015, 34, 30-40.
Massey, M. ; Ancona, M. G. ; Medintz, I. L. ; W. Algar, R. Time-Gated Dna Photonic Wires With Forster Resonance Energy Transfer Cascades Initiated By A Luminescent Terbium Donor. ACS PHOTONICS 2015, 2, 639-652.
Wu, M. ; W. Algar, R. Acceleration Of Proteolytic Activity Associated With Selection Of Thiol Ligand Coatings On Quantum Dots. ACS APPLIED MATERIALS & INTERFACES 2015, 7, 2535-2545.
Petryayeva, E. ; W. Algar, R. Integrated Smartphone Imaging Of Quantum Dot Photoluminescence And Forster Resonance Energy Transfer. In NEXT-GENERATION SPECTROSCOPIC TECHNOLOGIES VIII; Druy, M. A. ; Crocombe, R. A. ; Bannon, D. P. ; NEXT-GENERATION SPECTROSCOPIC TECHNOLOGIES VIII; 2015; Vol. 9482, p. 94820L.
Massey, M. ; Ancona, M. G. ; Medintz, I. L. ; Algar, W. R. Time-Resolved Nucleic Acid Hybridization Beacons Utilizing Unimolecular And Toehold-Mediated Strand Displacement Designs. Analytical Chemistry 2015, 87, DOI: 10.1021/acs.analchem.5b03618.
Wu, M. ; Massey, M. ; Petryayeva, E. ; Algar, W. R. Energy Transfer Pathways In A Quantum Dot-Based Concentric Fret Configuration. Journal of Physical Chemistry C 2015, 119, DOI: 10.1021/acs.jpcc.5b08612.
Algar, W. R. ; De Jong, C. A. G. ; Maxwell, E. J. ; Atkins, C. G. Demonstration Of The Spectrophotometric Complementary Color Wheel Using Leds And Indicator Dyes. Journal of Chemical Education 2015, 92, DOI: 10.1021/acs.jchemed.5b00665.
Wang, J. J. ; Rodríguez-Núñez, J. R. ; Maxwell, E. J. ; Algar, W. R. Build Your Own Photometer: A Guided-Inquiry Experiment To Introduce Analytical Instrumentation. Journal of Chemical Education 2015, 92, DOI: 10.1021/acs.jchemed.5b00426.
Wu, M. ; W. Algar, R. Concentric Forster Resonance Energy Transfer Imaging. ANALYTICAL CHEMISTRY 2015, 87, 8078-8083.

2014

Blanco-Canosa, J. B. ; Wu, M. ; Susumu, K. ; Petryayeva, E. ; Jennings, T. L. ; Dawson, P. E. ; W. Algar, R. ; Medintz, I. L. Recent Progress In The Bioconjugation Of Quantum Dots. COORDINATION CHEMISTRY REVIEWS 2014, 263, 101-137.
Johnson, B. J. ; W. Algar, R. ; Malanoski, A. P. ; Ancona, M. G. ; Medintz, I. L. Understanding Enzymatic Acceleration At Nanoparticle Interfaces: Approaches And Challenges. NANO TODAY 2014, 9, 102-131.
Massey, M. ; W. Algar, R. Evaluation Of Thiazole Intercalating Dyes As Acceptors For Quantum Dot Donors In Forster Resonance Energy Transfer. In SMART BIOMEDICAL AND PHYSIOLOGICAL SENSOR TECHNOLOGY XI; Cullum, B. M. ; McLamore, E. S. ; SMART BIOMEDICAL AND PHYSIOLOGICAL SENSOR TECHNOLOGY XI; 2014; Vol. 9107, p. 91070W.
W. Algar, R. ; Stewart, M. H. ; Scott, A. M. ; Moon, W. J. ; Medintz, I. L. Quantum Dots As Platforms For Charge Transfer-Based Biosensing: Challenges And Opportunities. JOURNAL OF MATERIALS CHEMISTRY B 2014, 2, 7816-7827.
Conroy, E. M. ; W. Algar, R. Evaluation Of Quantum Dot-Based Concentric Fret Configurations With A Fluorescent Dye And Dark Quencher For Multiplexed Bioanalyses. In COLLOIDAL NANOPARTICLES FOR BIOMEDICAL APPLICATIONS IX; Parak, W. J. ; Osinski, M. ; Yamamoto, K. I. ; COLLOIDAL NANOPARTICLES FOR BIOMEDICAL APPLICATIONS IX; 2014; Vol. 8955, p. 89550U.
Buckhout-White, S. ; Spillmann, C. M. ; W. Algar, R. ; Khachatrian, A. ; Melinger, J. S. ; Goldman, E. R. ; Ancona, M. G. ; Medintz, I. L. Assembling Programmable Fret-Based Photonic Networks Using Designer Dna Scaffolds. NATURE COMMUNICATIONS 2014, 5, 5615.
Wu, M. ; Petryayeva, E. ; Medintz, I. L. ; Algar, W. R. Q}Uantitative Measurement Of Proteolytic Rates With Quantum Dot-Peptide Substrate Conjugates And Förster Resonance Energy Transfer. Methods in Molecular Biology 2014, 1199, 215–239.
Wu, M. ; Petryayeva, E. ; W. Algar, R. Quantum Dot-Based Concentric Fret Configuration For The Parallel Detection Of Protease Activity And Concentration. ANALYTICAL CHEMISTRY 2014, 86, 11181-11188.
Hildebrandt, N. ; K. Wegner, D. ; W. Algar, R. Luminescent Terbium Complexes: Superior Forster Resonance Energy Transfer Donors For Flexible And Sensitive Multiplexed Biosensing. COORDINATION CHEMISTRY REVIEWS 2014, 273, 125-138.
Spillmann, C. M. ; Naciri, J. ; W. Algar, R. ; Medintz, I. L. ; Delehanty, J. B. Multifunctional Liquid Crystal Nanoparticles For Intracellular Fluorescent Imaging And Drug Delivery. ACS NANO 2014, 8, 6986-6997.
Scott, A. M. ; W. Algar, R. ; Stewart, M. H. ; Trammell, S. A. ; Blanco-Canosa, J. B. ; Dawson, P. E. ; Deschamps, J. R. ; Goswami, R. ; Oh, E. ; Huston, A. L. ; Medintz, I. L. Probing The Quenching Of Quantum Dot Photoluminescence By Peptide-Labeled Ruthenium(Ii) Complexes. JOURNAL OF PHYSICAL CHEMISTRY C 2014, 118, 9239-9250.
Kim, H. ; Petryayeva, E. ; W. Algar, R. Enhancement Of Quantum Dot Forster Resonance Energy Transfer Within Paper Matrices And Application To Proteolytic Assays. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS 2014, 20, 7300211.
Petryayeva, E. ; W. Algar, R. Multiplexed Homogeneous Assays Of Proteolytic Activity Using A Smartphone And Quantum Dots. ANALYTICAL CHEMISTRY 2014, 86, 3195-3202.
M. Noor, O. ; Petryayeva, E. ; Tavares, A. J. ; Uddayasankar, U. ; W. Algar, R. ; Krull, U. J. Building From The ``ground'' Up: Developing Interfacial Chemistry For Solid-Phase Nucleic Acid Hybridization Assays Based On Quantum Dots And Fluorescence Resonance Energy Transfer. COORDINATION CHEMISTRY REVIEWS 2014, 263, 25-52.
W. Algar, R. ; Kim, H. ; Medintz, I. L. ; Hildebrandt, N. Emerging Non-Traditional Forster Resonance Energy Transfer Configurations With Semiconductor Quantum Dots: Investigations And Applications. COORDINATION CHEMISTRY REVIEWS 2014, 263, 65-85.

2013

Delehanty, J. B. ; Spillmann, C. M. ; Naciri, J. ; W. Algar, R. ; Ratna, B. R. ; Medintz, I. L. Fluorescent Nanocolloids For Differential Labeling Of The Endocytic Pathway And Drug Delivery Applications. In COLLOIDAL NANOCRYSTALS FOR BIOMEDICAL APPLICATIONS VIII; Parak, W. J. ; Osinski, M. ; Yamamoto, K. ; COLLOIDAL NANOCRYSTALS FOR BIOMEDICAL APPLICATIONS VIII; 2013; Vol. 8595, p. 85951E.
Stewart, M. H. ; Huston, A. L. ; Scott, A. M. ; Oh, E. ; W. Algar, R. ; Deschamps, J. R. ; Susumu, K. ; Jain, V. ; Prasuhn, D. E. ; Blanco-Canosa, J. ; Dawson, P. E. ; Medintz, I. L. Competition Between Forster Resonance Energy Transfer And Electron Transfer In Stoichiometrically Assembled Semiconductor Quantum Dot-Fullerene Conjugates. ACS NANO 2013, 7, 9489-9505.
Petryayeva, E. ; W. Algar, R. Proteolytic Assays On Quantum-Dot-Modified Paper Substrates Using Simple Optical Readout Platforms. ANALYTICAL CHEMISTRY 2013, 85, 8817-8825.
Spillmann, C. M. ; Ancona, M. G. ; Buckhout-White, S. ; W. Algar, R. ; Stewart, M. H. ; Susumu, K. ; Huston, A. L. ; Goldman, E. R. ; Medintz, I. L. Achieving Effective Terminal Exciton Delivery In Quantum Dot Antenna-Sensitized Multistep Dna Photonic Wires. ACS NANO 2013, 7, 7101-7118.
Algar, W. R. ; Medintz, I. L. Concentric Energy Transfer With Quantum Dots For Multiplexed Biosensing}. Nano Reviews 2013, 4, 22428.
Anderson, G. P. ; Glaven, R. H. ; W. Algar, R. ; Susumu, K. ; Stewart, M. H. ; Medintz, I. L. ; Goldman, E. R. Single Domain Antibody-Quantum Dot Conjugates For Ricin Detection By Both Fluoroimmunoassay And Surface Plasmon Resonance. ANALYTICA CHIMICA ACTA 2013, 786, 132-138.
Algar, W. R. ; Blanco-Canosa, J. B. ; Manthe, R. L. ; Susumu, K. ; Stewart, M. H. ; Dawson, P. E. ; Medintz, I. L. Synthesizing And Modifying Peptides For Chemoselective Ligation And Assembly Into Quantum Dot-Peptide Bioconjugates}. Methods in Molecular Biology 2013, 1025, 47–73.
Boeneman, K. ; Delehanty, J. B. ; Blanco-Canosa, J. B. ; Susumu, K. ; Stewart, M. H. ; Oh, E. ; Huston, A. L. ; Dawson, G. ; Ingale, S. ; Walters, R. ; Domowicz, M. ; Deschamps, J. R. ; W. Algar, R. ; DiMaggio, S. ; Manono, J. ; Spillmann, C. M. ; Thompson, D. ; Jennings, T. L. ; Dawson, P. E. ; Medintz, I. L. Selecting Improved Peptidyl Motifs For Cytosolic Delivery Of Disparate Protein And Nanoparticle Materials. ACS NANO 2013, 7, 3778-3796.
Sapsford, K. E. ; W. Algar, R. ; Berti, L. ; Gemmill, K. Boeneman; Casey, B. J. ; Oh, E. ; Stewart, M. H. ; Medintz, I. L. Functionalizing Nanoparticles With Biological Molecules: Developing Chemistries That Facilitate Nanotechnology. CHEMICAL REVIEWS 2013, 113, 1904-2074.
Petryayeva, E. ; W. Algar, R. ; Medintz, I. L. Quantum Dots In Bioanalysis: A Review Of Applications Across Various Platforms For Fluorescence Spectroscopy And Imaging. APPLIED SPECTROSCOPY 2013, 67, 215-252.
Buckhout-White, S. ; Spillmann, C. ; Ancona, M. ; W. Algar, R. ; Stewart, M. H. ; Susumu, K. ; Huston, A. ; Goldman, E. R. ; Medintz, I. L. Improving Energy Transfer In Qd-Dna Photonic Networks. In NANOBIOSYSTEMS: PROCESSING, CHARACTERIZATION, AND APPLICATIONS VI; Kobayashi, N. ; Ouchen, F. ; Rau, I. ; NANOBIOSYSTEMS: PROCESSING, CHARACTERIZATION, AND APPLICATIONS VI; 2013; Vol. 8817, p. UNSP 88170J.
Claussen, J. C. ; W. Algar, R. ; Hildebrandt, N. ; Susumu, K. ; Ancona, M. G. ; Medintz, I. L. Enhancing Molecular Logic Through Modulation Of Temporal And Spatial Constraints With Quantum Dot-Based Systems That Use Fluorescent (Forster) Resonance Energy Transfer. In NANOBIOSYSTEMS: PROCESSING, CHARACTERIZATION, AND APPLICATIONS VI; Kobayashi, N. ; Ouchen, F. ; Rau, I. ; NANOBIOSYSTEMS: PROCESSING, CHARACTERIZATION, AND APPLICATIONS VI; 2013; Vol. 8817, p. UNSP 88170O.
Claussen, J. C. ; W. Algar, R. ; Hildebrandt, N. ; Susumu, K. ; Ancona, M. G. ; Medintz, I. L. Biophotonic Logic Devices Based On Quantum Dots And Temporally-Staggered Forster Energy Transfer Relays. NANOSCALE 2013, 5, 12156-12170.

2012

W. Algar, R. ; Ancona, M. G. ; Malanoski, A. P. ; Susumu, K. ; Medintz, I. L. Assembly Of A Concentric Forster Resonance Energy Transfer Relay On A Quantum Dot Scaffold: Characterization And Application To Multiplexed Protease Sensing. ACS NANO 2012, 6, 11044-11058.
W. Algar, R. ; Malanoski, A. P. ; Susumu, K. ; Stewart, M. H. ; Hildebrandt, N. ; Medintz, I. L. Multiplexed Tracking Of Protease Activity Using A Single Color Of Quantum Dot Vector And A Time-Gated Forster Resonance Energy Transfer Relay. ANALYTICAL CHEMISTRY 2012, 84, 10136-10146.
Delehanty, J. B. ; Susumu, K. ; Manthe, R. L. ; W. Algar, R. ; Medintz, I. L. Active Cellular Sensing With Quantum Dots: Transitioning From Research Tool To Reality; A Review. ANALYTICA CHIMICA ACTA 2012, 750, 63-81.
W. Algar, R. ; Malonoski, A. ; Deschamps, J. R. ; Banco-Canosa, J. B. ; Susumu, K. ; Stewart, M. H. ; Johnson, B. J. ; Dawson, P. E. ; Medintz, I. L. Proteolytic Activity At Quantum Dot-Conjugates: Kinetic Analysis Reveals Enhanced Enzyme Activity And Localized Interfacial ``hopping''. NANO LETTERS 2012, 12, 3793-3802.
W. Algar, R. ; Wegner, D. ; Huston, A. L. ; Blanco-Canosa, J. B. ; Stewart, M. H. ; Armstrong, A. ; Dawson, P. E. ; Hildebrandt, N. ; Medintz, I. L. Quantum Dots As Simultaneous Acceptors And Donors In Time-Gated Forster Resonance Energy Transfer Relays: Characterization And Biosensing. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 2012, 134, 1876-1891.
Tavares, A. J. ; M. Noor, O. ; Vannoy, C. H. ; W. Algar, R. ; Krull, U. J. On-Chip Transduction Of Nucleic Acid Hybridization Using Spatial Profiles Of Immobilized Quantum Dots And Fluorescence Resonance Energy Transfer. ANALYTICAL CHEMISTRY 2012, 84, 312-319.

2011

W. Algar, R. ; Krull, U. J. Immobilization Of Cdse/zns Quantum Dots On Glass Beads For The Detection Of Nucleic Acid Hybridization Using Fluorescence Resonance Energy Transfer. In COLLOIDAL QUANTUM DOTS/NANOCRYSTALS FOR BIOMEDICAL APPLICATIONS VI; Parak, W. J. ; Yamamoto, K. ; Osinski, M. ; COLLOIDAL QUANTUM DOTS/NANOCRYSTALS FOR BIOMEDICAL APPLICATIONS VI; 2011; Vol. 7909, p. 79090C.
Tavares, A. J. ; M. Noor, O. ; W. Algar, R. ; Vannoy, C. H. ; Chen, L. ; Krull, U. J. Toward An On-Chip Multiplexed Nucleic Acid Hybridization Assay Using Immobilized Quantum Dot-Oligonucleotide Conjugates And Fluorescence Resonance Energy Transfer. In COLLOIDAL QUANTUM DOTS/NANOCRYSTALS FOR BIOMEDICAL APPLICATIONS VI; Parak, W. J. ; Yamamoto, K. ; Osinski, M. ; COLLOIDAL QUANTUM DOTS/NANOCRYSTALS FOR BIOMEDICAL APPLICATIONS VI; 2011; Vol. 7909, p. 79090X.
Chen, L. ; W. Algar, R. ; Tavares, A. J. ; Krull, U. J. Toward A Solid-Phase Nucleic Acid Hybridization Assay Within Microfluidic Channels Using Immobilized Quantum Dots As Donors In Fluorescence Resonance Energy Transfer. ANALYTICAL AND BIOANALYTICAL CHEMISTRY 2011, 399, 133-141.
W. Algar, R. ; Susumu, K. ; Delehanty, J. B. ; Medintz, I. L. Semiconductor Quantum Dots In Bioanalysis: Crossing The Valley Of Death. ANALYTICAL CHEMISTRY 2011, 83, 8826-8837.
Morgner, F. ; Stufler, S. ; Geissler, D. ; Medintz, I. L. ; W. Algar, R. ; Susumu, K. ; Stewart, M. H. ; Blanco-Canosa, J. B. ; Dawson, P. E. ; Hildebrandt, N. Terbium To Quantum Dot Fret Bioconjugates For Clinical Diagnostics: Influence Of Human Plasma On Optical And Assembly Properties. SENSORS 2011, 11, 9667-9684.
Sapsford, K. E. ; Spindel, S. ; Jennings, T. ; Tao, G. ; Triulzi, R. C. ; W. Algar, R. ; Medintz, I. L. Optimizing Two-Color Semiconductor Nanocrystal Immunoassays In Single Well Microtiter Plate Formats. SENSORS 2011, 11, 7879-7891.
Jennings, T. L. ; Becker-Catania, S. G. ; Triulzi, R. C. ; Tao, G. ; Scott, B. ; Sapsford, K. E. ; Spindel, S. ; Oh, E. ; Jain, V. ; Delehanty, J. B. ; Prasuhn, D. E. ; Boeneman, K. ; W. Algar, R. ; Medintz, I. L. Reactive Semiconductor Nanocrystals For Chemoselective Biolabeling And Multiplexed Analysis. ACS NANO 2011, 5, 5579-5593.
Susumu, K. ; Oh, E. ; Delehanty, J. B. ; Blanco-Canosa, J. B. ; Johnson, B. J. ; Jain, V. ; Hervey, W. Judson; W. Algar, R. ; Boeneman, K. ; Dawson, P. E. ; Medintz, I. L. Multifunctional Compact Zwitterionic Ligands For Preparing Robust Biocompatible Semiconductor Quantum Dots And Gold Nanoparticles. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 2011, 133, 9480-9496.
W. Algar, R. ; Prasuhn, D. E. ; Stewart, M. H. ; Jennings, T. L. ; Blanco-Canosa, J. B. ; Dawson, P. E. ; Medintz, I. L. The Controlled Display Of Biomolecules On Nanoparticles: A Challenge Suited To Bioorthogonal Chemistry. BIOCONJUGATE CHEMISTRY 2011, 22, 825-858.
Tavares, A. J. ; Chong, L. ; Petryayeva, E. ; W. Algar, R. ; Krull, U. J. Quantum Dots As Contrast Agents For In Vivo Tumor Imaging: Progress And Issues. ANALYTICAL AND BIOANALYTICAL CHEMISTRY 2011, 399, 2331-2342.

2010

W. Algar, R. ; Krull, U. J. New Opportunities In Multiplexed Optical Bioanalyses Using Quantum Dots And Donor-Acceptor Interactions. ANALYTICAL AND BIOANALYTICAL CHEMISTRY 2010, 398, 2439-2449.
W. Algar, R. ; Krull, U. J. Promoting Active Learning By Practicing The ``self-Assembly'' Of Model Analytical Instruments. JOURNAL OF CHEMICAL EDUCATION 2010, 87, 942-944.
Tavares, A. J. ; Petryayeva, E. ; W. Algar, R. ; Chen, L. ; Krull, U. J. Toward A Hybridization Assay Using Fluorescence Resonance Energy Transfer And Quantum Dots Immobilized In Microfluidic Channels. In PHOTONICS NORTH 2010; Schriemer, H. P. ; Kleiman, R. N. ; PHOTONICS NORTH 2010; 2010; Vol. 7750, p. UNSP 775003.

2009

W. Algar, R. ; Massey, M. ; Krull, U. J. The Application Of Quantum Dots, Gold Nanoparticles And Molecular Switches To Optical Nucleic-Acid Diagnostics. TRAC-TRENDS IN ANALYTICAL CHEMISTRY 2009, 28, 292-306.

2008

Prigozhin, M. B. ; Shiwsankar, P. ; W. Algar, R. ; Krull, U. J. Porous Silicon: Electrochemical Microstructuring, Photoluminescence And Covalent Modification. In PHOTONICS NORTH 2008; Vallee, R. ; Piche, M. ; PHOTONICS NORTH 2008; 2008; Vol. 7099, p. 70991A.

2007

W. Algar, R. ; Zhou, Y. ; Zeng, J. ; Krull, U. J. Towards Quantum Dot And Fret-Based Optical Dna Biosensor Technology: Surface Chemistry And Photoluminescence Of Cdse/zns And Si Quantum Dots. In PHOTONICS NORTH 2007, PTS 1 AND 2; Armitage, J. ; PHOTONICS NORTH 2007, PTS 1 AND 2; 2007; Vol. 6796, p. 67960Q.

2006