Research & Teaching Faculty

Optimal attachment position and linker length promote native-like character of cavitand-based template-assembled synthetic proteins (TASPs)

TitleOptimal attachment position and linker length promote native-like character of cavitand-based template-assembled synthetic proteins (TASPs)
Publication TypeJournal Article
Year of Publication2007
AuthorsSeo, ES, Scott, WRP, Straus, SK, Sherman, JC
JournalChemistry-a European Journal
Volume13
Pagination3596-3605
ISBN Number0947-6539
Abstract

We have designed, synthesised and characterised a series of template-assembled de novo four-helix bundles, each differing in the linker length between the template and the peptides. The helix is based on an earlier peptide sequence: EELLKKLEELLKKLG (first-generation sequence), which was designed to link the hydrophilic/hydrophobic interface of the helices. Increasing or decreasing the linker length by one glycine residue had a significant effect on the structure and properties of the template-assembled synthetic proteins (TASPs). Here, the effect of the linker length is further probed by linking the peptides closer to the hydrophobic face by using the second-generation sequence, AEELLKKLEELLKKG, in an effort to improve the packing between the helices and to better understand the helical bundles. The peptides were synthesised with 0-4 Gly linker residues and linked onto a cavitand template. The proteins were found to be alpha-helical, stable to guanidine hydrochloride (GuHCl) and to unfold cooperatively. However, their stabilities toward GuHCl, propensity to self-aggregate and structural specificity differed. The two-glycine variant of the second-generation series demonstrated the highest stability and most native-like character of all the mononeric TASPs in both the first- and second-generation series. The structural specificity of this two glycine variant is comparable to that of other known native-like de novo proteins. Molecular dynamics simulations showed that the two-glycine variant contains helices that are tilted with respect to the cavitand template and may account for its unique properties.

URL<Go to ISI>://000246434300002