Research & Teaching Faculty

Protein Mechanics: From Single Molecules to Functional Biomaterials

TitleProtein Mechanics: From Single Molecules to Functional Biomaterials
Publication TypeJournal Article
Year of Publication2010
AuthorsLi, H, Cao, Y
JournalACCOUNTS OF CHEMICAL RESEARCH
Volume43
Pagination1331-1341
Date PublishedOCT
ISSN0001-4842
Abstract

Elastomeric proteins act as the essential functional units in a wide variety of biomechanical machinery and serve as the basic building blocks for biological materials that exhibit superb mechanical properties. These proteins provide the desired elasticity, mechanical strength, resilience, and toughness within these materials. Understanding the mechanical properties of elastomeric protein-based biomaterials is a multiscale problem spanning from the atomistic/molecular level to the macroscopic level. Uncovering the design principles of individual elastomeric building blocks is critical both for the scientific understanding of multiscale mechanics of biomaterials and for the rational engineering of novel biomaterials with desirable mechanical properties. The development of single-molecule force spectroscopy techniques has provided methods for characterizing mechanical properties of elastomeric proteins one molecule at a time. Single-molecule atomic force microscopy (AFM) is uniquely suited to this purpose. Molecular dynamic simulations, protein engineering techniques, and single-molecule AFM study have collectively revealed tremendous insights into the molecular design of single elastomeric proteins, which can guide the design and engineering of elastomeric proteins with tailored mechanical properties. Researchers are focusing experimental efforts toward engineering artificial elastomeric proteins with mechanical properties that mimic or even surpass those of natural elastomeric proteins. In this Account, we summarize our recent experimental efforts to engineer novel artificial elastomeric proteins and develop general and rational methodologies to tune the nanomechanical properties of elastomeric proteins at the single-molecule level. We focus on general design principles used for enhancing the mechanical stability of proteins. These principles include the development of metal-chelation-based general methodology, strategies to control the unfolding hierarchy of multidomain elastomeric proteins, and the design of novel elastomeric proteins that exhibit stimuli-responsive mechanical properties. Moving forward, we are now exploring the use of these artificial elastomeric proteins as building blocks of protein-based biomaterials. Ultimately, we would like to rationally tailor mechanical properties of elastomeric protein-based materials by programming the molecular sequence, and thus nanomechanical properties, of elastomeric proteins at the single-molecule level. This step would help bridge the gap between single protein mechanics and material biomechanics, revealing how the mechanical properties of individual elastomeric proteins are translated into the properties of macroscopic materials.

DOI10.1021/ar100057a