Research & Teaching Faculty

Identification of proteolytic products and natural protein N-termini by Terminal Amine Isotopic Labeling of Substrates (TAILS).

TitleIdentification of proteolytic products and natural protein N-termini by Terminal Amine Isotopic Labeling of Substrates (TAILS).
Publication TypeJournal Article
Year of Publication2011
AuthorsDoucet, A, Kleifeld, O, Kizhakkedathu, JN, Overall, CM
JournalMethods in molecular biology (Clifton, N.J.)
Volume753
Pagination273-87
Date Published2011
Abstract

Determining the sequence of protein N-termini and their modifications functionally annotates proteins since translation isoforms, posttranslational modifications, and proteolytic truncations direct localization, activity, and the half-life of most proteins. Here we present in detail the steps required to perform our recently described approach we call Terminal Amine Isotopic Labeling of Substrates (TAILS), a combined N-terminomics and protease substrate discovery degradomics platform for the simultaneous quantitative and global analysis of the N-terminome and proteolysis in one MS/MS experiment. By a 3-day procedure with flexible α- and ɛ-amine labeling and blocking options, TAILS removes internal tryptic and C-terminal peptides by binding to a dendritic polyglycerol aldehyde polymer. Therefore, by negative selection, this enriches for both the N-terminal-labeled peptides and all forms of naturally blocked N-terminal peptides. In addition to providing valuable proteome annotation, the simultaneous analysis of the original mature N-terminal peptides enables these peptides to be used for higher confidence protein substrate identification by two or more different and unique peptides. Second, the analysis of the N-terminal peptides forms a statistical classifier to determine valid isotope ratio cutoffs in order to identify with high-confidence protease-generated neo-N-terminal peptides. Third, quantifying the loss of acetylated or cyclized N-terminal peptides that have been cleaved extends overall substrate coverage. Hence, TAILS allows for the global analysis of the N-terminome and determination of cleavage site motifs and substrates for protease including those with unknown or broad specificity.