Research & Teaching Faculty

Default Header Image

Engineered elastomeric proteins with dual elasticity can be controlled by a molecular regulator

TitleEngineered elastomeric proteins with dual elasticity can be controlled by a molecular regulator
Publication TypeJournal Article
Year of Publication2008
AuthorsCao, Y, Li, HB
JournalNature Nanotechnology
Volume3
Pagination512-516
Date PublishedAug
Type of ArticleArticle
ISBN Number1748-3387
KeywordsBINDING, BIOLOGICAL ROLES, DESIGN, DOMAINS, FORCE-SPECTROSCOPY, MECHANICAL-PROPERTIES, STABILITY, TITINS, TOPOLOGY
Abstract

Elastomeric proteins are molecular springs that confer excellent mechanical properties(1-5) to many biological tissues and biomaterials. Depending on the role performed by the tissue or biomaterial, elastomeric proteins can behave as molecular springs(1,2,6,7) or shock absorbers(3-5,8-10). Here we combine single-molecule atomic force microscopy and protein engineering techniques to create elastomeric proteins that can switch between two distinct types of mechanical behaviour in response to the binding of a molecular regulator. The proteins are mechanically labile by design and behave as entropic springs with an elasticity that is governed by their configurational entropy. However, when a molecular regulator binds to the protein, it switches into a mechanically stable state and can act as a shock absorber. These engineered proteins effectively mimic and combine the two extreme forms of elastic behaviour found in natural elastomeric proteins, and thus represent a new type of smart nanomaterial that will find potential applications in nanomechanics and material sciences.

URL<Go to ISI>://000258325800018