Characterization of Carceplexes Using APCI, ESI and MALDI Mass Spectrometry

Cindy Chiao-Yuan Lee, Pamela Miller, Lufiani Madilao, Marshall Lapawa, <u>Yun Ling</u> Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada

Objectives

Carceplexes are carcerands that contain permanently entrapped guest molecules or ions within their confines. Investigate comparatively APCI, ESI and MALDI mass spectrometry for the characterization of host-guest complexes, carceplexes, (M+G) in which M is an enforced closed-shell molecule (carcerand).

Compounds Tested in This Study

Molecular Formula	MW ^a	Guest(G)	G
			Μ
C120H152O16S4@C5H6O	2036.9	Acetone	58
C120H152O16S4@C4H7N	2047.8	Butyronitrile	6
C120H152O16S4@C3H5NO	2049.9	Methoxy Acetonitrile	71
C120H152O16S4@CH2Cl2	2063.7	Dichloromethane	84
$C_{120}H_{152}O_{16}S_4@C_4H_8O_2\\$	2066.9	1,4-Dioxane	88

a. Average mass, b. Norminal mass

Methods

- The APCI and ESI-MS experiments were carried out on Bruker Esquire~LC and Micromass LCT. The MALDI-MS was performed on Bruker Biflex IV.
- Stock solutions of the carceplex samples were normally prepared in CHCl₃. The working solutions were made by the dilution of stock solutions with different solvents or buffers. For FSI-MS or APCI-MS, tested solvents and buffers include
- CHCl₃, CH₃OH, NH₄OAc, NaOAc, KOAc, NH₄HCO₃ and triethylammonium bicarbonate (TEAB).
- MS/MS spectra of the carceplexes were measured on Bruker Esquire~LC.
- Several different matrices including dithranol and 2-amino-5nitropyridine (ANP) as well as different cationization reagents were tested for MALDI-MS.

0.4

100mM NH₄HCO₃

[M+H] 1979

2142

G:Acetone

2146 [M+G+Ag]+

Structure Information from MS/MS

 MS/MS spectra of (M+G+H)* gave mainly (M+H)* for most of carceplexes and no fragmentation was observed for the MS/MS of (M+G+OAC).
Fragmentation of (M+H)*, the protonated carcerand, was also observed and loss of 46 was the major channel. Neutral loss of 46 is likely SCH₂ and suggests the breakage of the bridges.

ANP/AgTFA

1979 [M+H] 4000 G:Methoxy 2050 [M+G+H]+ 300 Acetonitrile 2000 1000 0.8 Amp 1250 1979 [M+H] 1000 750 [M+H-46] 500 [M+H-46-46]* 3.5 Amp 250 1033 1841 1887

Conclusions

- MS Conditions for characterization of carceplexes were proposed.
- All ESI, APCI, MALDI can be used to characterize carceplexes.

Acknowledgements

Prof. John Sherman, Ayub Jasat for providing the carceplex samples.

 Sodiated carceplexes, (M+G+Na)⁺, were observed as the dominate peaks with NaOAc as cationization reagent.
Only week peaks for protonated carceplexes, (M+G+H)⁺, were observed with 100 mM NH₄OAC as cationization reagent.