@article {1390, title = {Carbohydrate-appended 3-hydroxy-4-pyridinone complexes of the [M(CO)(3)](+) core (M) Re, Tc-99m, Re-186)}, journal = {Bioconjugate Chemistry}, volume = {17}, number = {5}, year = {2006}, note = {ISI Document Delivery No.: 085LXTimes Cited: 21Cited Reference Count: 69Ferreira, Cara L. Bayly, Simon R. Green, David E. Storr, Tim Barta, Cheri A. Steele, Jennifer Adam, Michael J. Orvig, Chris}, month = {Sep}, pages = {1321-1329}, type = {Article}, abstract = {This work describes the use of 3-hydroxy-4-pyridinone ligands for binding the [M(CO)(3)](+) core ( M) Re, Tc) in the context of preparing novel Tc( I) and Re( I) glucose conjugates. Five pyridinone ligands bearing pendent carbohydrate moieties, HL1-5, were coordinated to the [M(CO)(3)](+0) core on the macroscopic scale ( M) Re) and on the tracer scale (M) = Tc-99m, Re-186). On the macroscopic scale the complexes, ReL1-5(CO)(3)(H{\O}-2), were thoroughly characterized by mass spectrometry, IR spectroscopy, UV-visible spectroscopy, elemental analysis, and 1D/2D NMR spectroscopy. Characterization confirmed the bidentate coordination of the pyridinone and the pendent nature of the carbohydrate and suggests the presence of a water molecule in the sixth coordination site. In preliminary biological evaluation, both the ligands and complexes were assessed as potential substrates or inhibitors of hexokinase, but showed no activity. Labeling via the [Tc-99m(CO)(3)(H2O)(3)](+) precursor gave the tracer species (TcL1-5)-Tc-99m(CO)(3)(H2O) in high radiochemical yields. Similar high radiochemical yields when labeling with Re-186 were facilitated by in situ preparation of the [Re-186( CO)(3)(H2O)(3)](+) species in the presence of HL1-5 to give (ReL1-5)-Re-186(CO)(3)(H2O). Stability challenges, incubating (TcL1-5)-Tc-99m(CO)(3)(H2O) in the presence of excess cysteine and histidine, confirmed complex stability up to 24 h.}, keywords = {5-HT1A RECEPTOR, BIFUNCTIONAL LIGAND, BIOMOLECULES, GLUCOSE, IMAGING AGENTS, IN-VITRO, METAL-COMPLEXES, STRUCTURAL-CHARACTERIZATION, TRICARBONYL COMPLEXES, TRIDENTATE LIGANDS}, isbn = {1043-1802}, url = {://000240606700027}, author = {Ferreira, C. L. and Bayly, S. R. and Green, D. E. and Storr, T. and Barta, C. A. and Steele, J. and Adam,Michael J. and Orvig, Chris} } @article {1390, title = {Carbohydrate-appended 3-hydroxy-4-pyridinone complexes of the [M(CO)(3)](+) core (M) Re, Tc-99m, Re-186)}, journal = {Bioconjugate Chemistry}, volume = {17}, number = {5}, year = {2006}, note = {ISI Document Delivery No.: 085LXTimes Cited: 21Cited Reference Count: 69Ferreira, Cara L. Bayly, Simon R. Green, David E. Storr, Tim Barta, Cheri A. Steele, Jennifer Adam, Michael J. Orvig, Chris}, month = {Sep}, pages = {1321-1329}, type = {Article}, abstract = {This work describes the use of 3-hydroxy-4-pyridinone ligands for binding the [M(CO)(3)](+) core ( M) Re, Tc) in the context of preparing novel Tc( I) and Re( I) glucose conjugates. Five pyridinone ligands bearing pendent carbohydrate moieties, HL1-5, were coordinated to the [M(CO)(3)](+0) core on the macroscopic scale ( M) Re) and on the tracer scale (M) = Tc-99m, Re-186). On the macroscopic scale the complexes, ReL1-5(CO)(3)(H{\O}-2), were thoroughly characterized by mass spectrometry, IR spectroscopy, UV-visible spectroscopy, elemental analysis, and 1D/2D NMR spectroscopy. Characterization confirmed the bidentate coordination of the pyridinone and the pendent nature of the carbohydrate and suggests the presence of a water molecule in the sixth coordination site. In preliminary biological evaluation, both the ligands and complexes were assessed as potential substrates or inhibitors of hexokinase, but showed no activity. Labeling via the [Tc-99m(CO)(3)(H2O)(3)](+) precursor gave the tracer species (TcL1-5)-Tc-99m(CO)(3)(H2O) in high radiochemical yields. Similar high radiochemical yields when labeling with Re-186 were facilitated by in situ preparation of the [Re-186( CO)(3)(H2O)(3)](+) species in the presence of HL1-5 to give (ReL1-5)-Re-186(CO)(3)(H2O). Stability challenges, incubating (TcL1-5)-Tc-99m(CO)(3)(H2O) in the presence of excess cysteine and histidine, confirmed complex stability up to 24 h.}, keywords = {5-HT1A RECEPTOR, BIFUNCTIONAL LIGAND, BIOMOLECULES, GLUCOSE, IMAGING AGENTS, IN-VITRO, METAL-COMPLEXES, STRUCTURAL-CHARACTERIZATION, TRICARBONYL COMPLEXES, TRIDENTATE LIGANDS}, isbn = {1043-1802}, url = {://000240606700027}, author = {Ferreira, C. L. and Bayly, S. R. and Green, D. E. and Storr, T. and Barta, C. A. and Steele, J. and Adam,Michael J. and Orvig, Chris} }